
Deep learning is an artificial intelligence method by which a computer model can parse inputs and produce outputs in a way 
that is inspired by how neural networks in the human brain work. With the advent of self-driving vehicles, facial recognition, and 
surveillance cameras able to automatically detect suspicious behavior, computer vision is a quickly developing field within deep 
learning. Visual identification tasks that were once the sole domains of human inspectors are increasingly achievable by intelli-
gent computer vision systems. Tire manufacturers have an opportunity to use this technology to advance their existing equip-
ment investment to provide even better quality control.

Towards the beginning of this century, many tire manufacturers began investing in tire geometry systems using 3D laser profile 
sensors. These sensors scan each sidewall and the tread of an inflated and rotating tire to create a 3D image. The specialized tire 
geometry software examines each image to detect, measure, and grade any geometry defects along with radial and lateral 
runouts. Since these images contain most of the exterior of the inflated tire, why not use them as a second chance to check for 
visual defects?

In a typical tire factory, tires are fully inspected, inside and outside, prior to final finish testing by a specialized workforce of tire 
inspectors.  Downstream from this inspection, tires may be rejected or flagged for further inspection by any final finish test 
machine (e.g. tire uniformity, dynamic balancing, tire geometry, or X-ray machines); otherwise, they are sent to the warehouse 
without additional inspection. Therefore, it’s possible that tires can suffer visual damage by their handling after their initial 
inspection but still end up in the warehouse (fig. 1). These tires eventually get installed on vehicles, where the customer can 
notice the visual defects, reflecting poorly on your quality control. 

For a small investment, a tire factory could add visual inspection software to further examine its already-collected 3D laser 
profile images. This allows a tire factory to gain even more value from its prior large investment in tire geometry systems.

Deep Learning for Visual Inspection 
and Classification of Tire Defects

Visual Inspection from Tire Geometry Images

Laser Profile Sensors scan each sidewall and the tread 
of an inflated and rotating tire, creating a 3D image. 

Tire geometry systems can be located on a tire 
uniformity machine, a dynamic balancing machine, 
or even on their own dedicated machine. On the 
majority of these machines, the tire is inflated and 
rotating at a constant 60 rpm (or one revolution per 
second), and typically three sensors—covering the 
top sidewall, bottom sidewall, and tread— collect 
measurement data in one revolution (one second). 
The tire geometry system provides its typical 
geometry measurements (bulge, depression, lateral 
runout, radial runout, wobble, etc.) to the machine’s 
control system, which uses them to provide final 
grading results about each tire.

fig. 1
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Many of these tire geometry systems exist today using 3D laser profile sensors, providing at least 1000 profiles per revolution 
and containing a field of view of at least 75mm of tire data per profile. Newer sensors, such as the Gocator 2530 from LMI 
Technologies Inc., can provide over 4000 profiles per revolution. Other sensors, used mostly for tread/RRO measurements, 
provide a field of view of up to 400mm per profile. Acquiring more profiles per revolution greatly increases the capability of 
the visual inspection software to detect even the smallest defects, but tire geometry data collected at 1000 profiles per 
revolution can still detect many of the larger ones. The image data from the 3D laser profile sensors is stored for each tire so 
that they could be reviewed later if the downstream final tire inspectors (or classifiers) find fault with the geometry measure-
ments.

The only visual defects measured by the tire geometry systems are bulges and depressions in the sidewalls and bumps or 
dents in the tread (caused by a tread over-splice or under-splice). Other visual defects appearing in the tire geometry images 
go undetected. These could be caused by contaminated tire molds (fig. 2) or rubber not flowing correctly in the tire mold. Or 
it could be defects from damage due to tire handling equipment or even damage from improper processing by machines 
upstream to the tire geometry systems, such as white sidewall grinders (buffers), tire uniformity optimizers (grinding appear-
ance issues), or trimming stations.

This is where visual inspection software can help. Visual inspection software processes the high-resolution laser images from 
the tire geometry systems in a completely different manner, focusing on sharpening and flattening the image to provide the 
clearest picture. It detects and classifies any visual defects found in the tire geometry images. It could also find objects, such 
as the DOT code (fig. 3) and the tread wear indicator bars (even measuring their heights). Such software could provide 
higher-quality assistance to a human inspector (or classifier), or even replace the most mundane aspects of their work, 
freeing them up to process many more tires.
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One natural application of computer vision within deep learning is image processing. Within image processing, two common 
techniques are used: object detection and image classification. Object detection allows computer models to separate parts of 
images into background and foreground. The foreground parts are then analyzed, allowing for automatic detection, location, and 
classification of objects within an image. Image classification is when a computer model analyzes a whole image and then makes a 
decision—for instance, differentiating a photo of a cat from a person. These two techniques can be applied to visual tire inspection, 
whereby a computer model can input images from tires and output a list of classified defects from these images.

Before the deep learning model is trained, visual inspection software uses rule-based image classification algorithms that are 
specific to finding defects that meet its preprogrammed criteria. Any defects beyond a predefined surface area or volume 
threshold are highlighted in its resultant images. Defects such as pits or blemishes from curing mold contamination, gouges or 
similar damage from tire handling equipment, unwanted pin vents or flashing, and damage from improper processing by 
upstream equipment, such as grind appearance issues, can all be detected using smart algorithms employing statistics and 
thresholds to differentiate pass from fail. Rule-based software algorithms can provide good results for identifying many visual 
defects, but these have an accuracy rate only high enough to assist with their classification by the human inspector.

At the beginning of the proposed solution, the visual inspection software provides its results and high-resolution images to the 
existing human-operated final inspection (or classifier) stations. Each station makes use of a large, widescreen touch panel to 
display a tire’s visual inspection images with all potential defects identified. With the ability to pan and zoom within the images 
and the actual tire available for further examination, the inspector can manually classify each defect by selecting the appropriate 
classification from a dropdown list, including the ability to dismiss a defect misidentified by the software. The inspector can also 
manually identify any other defects, missed by the software, and classify them in the same manner. This feedback serves two 

purposes: (1) for flagging tires for rejection or repair, as part of improved quality control in 
the manufacturing process; (2) for training a deep learning model. The model would learn 
to detect and classify visual tire defects with high precision, becoming adept at the first 
purpose of flagging tires for rejection or repair and removing that task from the inspector. 
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Image Classification : Do images contain defects to be flagged? Object Detection : Find objects within tire image (tread wear bars)



In contrast, a deep learning model would train itself from the defects confirmed in the visual inspection images and classified 
by the final inspector. Once the accuracy of the model is validated, the visual inspection software is updated to begin using it to 
detect and classify defects without the assistance of the final inspector (fig. 4). It is common to report the accuracy of a model 
compared to the accuracy of a human doing the same task. It is not expected that either will be 100% accurate, but these 
models often outperform their human counterparts. 

 
The availability of labeled data (i.e. classified defects) to train these models is one of the biggest 
limitations industries face when looking to implement deep learning. Input data labeling is a human task and can take armies of 
labelers dedicated to the task. If labeled data is not being produced as part of a normal production process, it can be prohibi-
tively expensive to generate. That is why tire manufacturers have a unique opportunity to bring this transformative technology 
within reach by simply committing to capture data as part of an existing inspection process. Multiple tire factories within the 
same organization can share their captured data, training the deep learning model even faster.
 
Outside of detecting and classifying visual defects, the visual inspection software has additional image classification and object 
detection algorithms adding even more value to the tire geometry images. Such algorithms locate and read the DOT code on 
the sidewall, and, when using tread lasers with enough range, they measure the amount of rubber removed from force or 
runout grinding (optimization) and even measure the height of the tread wear indicator bars deep in the tread grooves.

Once the deep learning model is trained, it could run directly on the tire geometry systems, classifying 
any defects, reading the DOT code, measuring the height of the tread wear indicator bars, and even checking grind appearance. 
It could make those tasks part of the final geometry grading results. It could even call for extra ‘clean up’ grinding from the 
machine controller if grind appearance shows it is needed.

Since this is software, it can be updated and re-trained to find new problematic visual defects or to support new images from 
updated 3D laser profile sensors.  Think of it like Tesla’s Autopilot feature. Even the older model Tesla’s can be updated to the 
latest Autopilot features, including their latest deep learning models trained on the feedback from the ever-increasing amount 
of Tesla’s on the road, with the future hope that any Tesla will be capable of full self-driving.

Using images provided by the existing tire geometry systems, tire 
manufacturers can prevent tires with visual defects from reaching their 
customers. Adding tire geometry testing using 3D laser profile sensors 
was a big investment. However, only a small investment in visual 
inspection software is needed to detect and classify visual tire defects 
with high precision. All of this is done by using those tire geometry 
images from your prior large investment. Rule-based software algo-
rithms can provide good results for identifying many visual defects, but 
with confirmation and classification of those defects by the existing final 
inspectors, an expansive dataset can be created for training a deep 
learning model to detect and classify defects without the aid of final inspectors. 
This dataset guarantees increased quality from the plant floor to the tires on the road.
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